Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants

EPREUVE E2 : Etude d'un ouvrage

SESSION 2009

SEDIBEX : Société d'Elimination de Déchets Industriels de la Basse-seine d'Exploitation

Cette épreuve comporte :

Le sujet « tronc commun », composé par tous les candidats Le sujet « Approfondissement du champ application Industriel » Le sujet « Approfondissement du champ Habitat Tertiaire » »

Le candidat doit remplir le tableau ci dessous correspondant au sujet « approfondissement » qu'il a choisi.

A remplir par le candidat		
Je choisi l'approfondissement champ d'application :		
Compléter par la mention : habitat-tertiaire ou industriel		

ATTENTION: Dans tous les cas, ne sera corrigé et noté que le seul sujet approfondissement du champ d'application choisi par le candidat

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants			
		Durée : 5 heures	
Epreuve : E2	SUJET	Coefficient : 5	Page : 1 / 27

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants

EPREUVE E2 : Etude d'un ouvrage

SESSION 2009

Sujet: tronc commun

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants			
		Durée : 5 heures	
Épreuve : E2	SUJET	Coefficient : 5	Page : 2 / 27

Contenu du sujet

Lecture du sujet : Durée conseillée : 0 h 15

Partie A: ETUDE DU TRANSFORMATEUR: Durée conseillée: 0 h 45

Barème / 30

Partie B: ETUDE DE LA DISTRIBUTION DE L'INSTALLATION : Durée conseillée : 0 h 45

Barème / 40

Partie C : ETUDE DE L'ECLAIRAGE DE LA SALLE DE REUNION : Durée conseillée : 1 h 00

Barème / 40

Partie D : ETUDE DE LA V.D.I. DE L'EXTENSION : Durée conseillée : 0 h 45

Barème / 30

Champ d'application habitat-tertiaire :

Partie E : ETUDE DE L'ECLAIRAGE DE SECURITE ET DE L'ALARME INCENDIE : Durée conseillée : 1 h 30

Barème / 60

OU

Champ d'application industriel :

Partie F : ETUDE DU MOTEUR DE LEVAGE : Durée conseillée : 1 h 30

Barème / 60

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants			
		Durée : 5 heures	
Épreuve : E2	SUJET	Coefficient : 5	Page : 3 / 27

PARTIE A: TRANSFORMATEUR PRINCIPAL

(Dossier technique p. 4/31 à 5/31, 10/31 à 11/31)

/ 30

L'usine SEDIBEX est actuellement alimentée par 2 transformateurs en parallèle et par un turboalternateur :

- * Deux transformateurs de 800 kVA 20 kV / 400V
- * Un turboalternateur ALSTHOM de 1578 kVA 400 V

Le TGBT et les 2 transformateurs ont été installés en 1975. Pour des raisons de vieillissement et de normes au niveau des transformateurs (pyralène interdit), le choix est fait de remplacer les 2 transformateurs par un seul (schéma proposé dans le DT). On vous demande de choisir le nouveau transformateur, ainsi que la batterie de condensateurs.

A1- Déterminer le bilan de puissance de la ligne 1 en complétant le tableau ci-dessous. (Ne pas remplir les cases grisées)

/4 K_S P' Q Cosq Puissance Facteur de Ligne 1 Facteur de Puissance Puissance installée (kW) simultanéité réactive (kVAr) corrigée (kW) puissance **Formule** Application numérique Résultat 0,9 0,8

A2- Choix du transformateur.

A2.1- Déterminer la puissance totale installée en complétant le tableau ci-dessous.

	Puissance active (kW)	Puissance réactive (kVAr)
Ligne 1		
Ligne 2		
Auxiliaires		
Total		

A2.2- Déterminer la puissance apparente installée.

Formule	Application numérique	Résultat

A2.3- Déterminer la puissance apparente après réserve.

Pour une sûreté de fonctionnement, on prendra un coefficient de réserve de 25 %.

Formule	Application numérique	Résultat

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants			
		Durée : 5 heures	
Epreuve : E2	SUJET	Coefficient : 5	Page : 4 / 27

A2.4- Compléter le tableau ci-dessous concernant le choix du transformateur.

	Caractéristiques
Marque	France Transfo
Puissance apparente	
Couplage HT	
Couplage BT	
Indice horaire	
Diélectrique	
Pertes Fer	
Tension de court-circuit	

A3- Choix de la batterie de condensateurs.

Compléter le tableau ci-dessous afin de définir la puissance de la batterie de condensateurs, sachant que la puissance apparente des récepteurs produisant des harmoniques (Gh) est égale à 448 kVA et que l'on souhaite ramener la $\tan \varphi$ à 0,4. (On prendra $P_{INST} = 1020$ kW et $Q_{INST} = 750$ kVAR).

A3.1- Déterminer la valeur de la puissance réactive à compenser.

	Formule	Application numérique	Résultat
Tan φ de l'installation non compensée			
Puissance réactive Q _f après compensation			
Puissance réactive de compensation Q _C			

A3.2- Donner le type de compensation à choisir. Justifier votre réponse.

Automatique	Justification
Fixe	
<u> </u>	

A3.3- Donner le type de batterie à choisir. Justifier votre réponse.

Formule	Application numérique	Résultat

Caractéristique de l'équipement de compensation	Référence

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants					
_		Durée : 5 heures	_		
Epreuve : E2	SUJET	Coefficient : 5	Page : 5 / 27		

A4- Planning de remplacement des deux transformateurs 800 kVA par le nouveau transformateur.

Le nouveau transformateur sera installé sur l'emplacement du transformateur 1. On pré-câblera la cellule d'arrivée, le nouveau transformateur et le nouveau TGBT avant le basculement de l'installation.

Pendant la dépose du transformateur 1, l'installation fonctionnera grâce au transformateur 2 et au turboalternateur.

Le transformateur 2 sera déposé une fois l'installation remise sous tension.

Début du chantier : Lundi 10

Le basculement de l'installation s'effectuera le samedi 22. L'installation sera remise sous tension le dimanche 23.

Fin du chantier: Mercredi 26.

Pas de travaux le samedi 15 et le dimanche 16.

Proposer l'ordre d'exécution des différentes tâches listées dans le tableau ci-dessous, en sachant que :

- les tâches sont listées dans un ordre quelconque.
- les tâches ne peuvent pas se dérouler simultanément sauf le samedi 22 où plusieurs tâches seront effectuées par plusieurs équipes en même temps.
- Le temps de chaque tâche est évalué (en jour)

				Sen	naine	e 37			Semaine 38					Semaine 39					
		L	М	M	J	٧	S	D	L	М	М	J	V	S	D	L	M	М	
Consignation du TR1 800 kVA Débrochage et dépose du selpac TR1	1 jour	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	
Raccordement HT cellule d'arrivée	1 jour																		
Dépose du transfo TR2 et de ses câbles	1 jour																		
Raccordement BT nouveau transfo / TGBT	1 jour																		
Raccordement HT nouveau transfo / cellule d'arrivée	1 jour																		
Nettoyage du chantier	2 jours																		
Consignation du TR2 800 kVA Débrochage et dépose du selpac TR2	1 jour																		
Pose de la cellule arrivée	1 jour																		
Préparation raccordement BT nouveau transfo / TGBT	4 jours																		
Dépose du transfo TR1 et de ses câbles	1 jour																		
Mise en service et essais	1 jour																		
Mise en place du nouveau transfo.	2 jours																		

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants					
		Durée : 5 heures			
Epreuve : E2	SUJET	Coefficient : 5	Page : 6 / 27		

PARTIE B: DISTRIBUTION (Dossier technique p. 4/31, 12/31 à 14/31)

Le transformateur (1600 kVA – 20 kV / 400 V) est donc installé. Il faut aussi changer les câbles reliant le transformateur au TGBT, ainsi que le disjoncteur principal Q_1 . On vous demande de déterminer le câble C1 et le disjoncteur Q1.

B1- Déterminer le type d'alimentation du poste de livraison HT. Quel est le principal avantage de ce type d'alimentation ?

Type d'alimentation HT	Avantage principal

B2- Déterminer le type de SLT. Justifier la réponse.

Type de SLT	Justification

Donner la signification de ce SLT ainsi que son principal avantage

Lettre	Signification	Avantage principal

B3.1- Calculer le courant I_n au secondaire du transformateur.

Formule	Application numérique	Résultat

B3.2- Déterminer le courant de court circuit Icc au secondaire du transformateur. (Ucc exprimée en %)

Formule	Application numérique	Résultat
$I_{CC} = \frac{I_n}{U_{CC}}$		

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants						
		Durée : 5 heures				
Epreuve : E2	SUJET	Coefficient : 5	Page : 7 / 27			

B4- Détermin	B4- Déterminer la section du câble C1.								
Déterminer la section du câble C1 sachant que I_n = 2309 A, la température est de 40°C et le facteur de puissance est de 0,8.									
B4.1- Détermi	ner la lettre de sélectio	n du mode de pose.							
		Lettre :							
B4.2- Déterminer les coefficients K1, K2 et K3. Calculer le coefficient de correction K.									
	K1	K2	K3	К					

B4.3- Calculer I'z en	considérant	ane I – I
D4.3- Calculet 1 z ell	Considerant	que 1 _z – 1 _n .

Formule	Application numérique	Résultat

B4.4- Déterminer la section minimale du câble C1. (Prendre le minimum de câble par phase)

Nombre de câbles par phase	Section d'un câble

B4.5- Déterminer la chute de tension du câble C1. (Ne pas remplir les cases grisées)

	Application numérique	Résultat
Chute de tension limite (%)		
u(tableau U2)		
u (circuit)		
Δu (%)		

La chute de tension est-elle acceptable ?

Justifiez votre réponse :

B5- Choix du disjoncteur Q1.

Il a été décidé de choisir un disjoncteur SCHNEIDER dans la gamme MASTERPACT. Donner ses caractéristiques.

Tension		
Nombre de pôles		
Calibre		
Débrochable	Oui	Non
Référence		
Pouvoir de coupure		

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants			
		Durée : 5 heures	
Epreuve : E2	SUJET	Coefficient : 5	Page : 8 / 27

PARTIE C: ECLAIRAGE DE LA SALLE DE REUNION

/ 40

(Dossier technique p. 7/31, 15/31 à 19/31)

Dans le cadre de l'agrandissement des locaux, on vous demande d'établir l'avant projet d'éclairage de la salle de réunion du nouveau bâtiment.

C1- Compléter l'avant projet d'éclairage :

C1.1- Relever les caractéristiques du local.

a : longueur en m	b : largeur en m	H : hauteur en m	h : Hauteur utile.	Facteur de réflexion des parois
				Plafond : Mur : Sol :

C1.2- Relever la nature de l'activité.

Déterminer le niveau d'éclairement en lux sachant que l'on considère la salle de réunion comme un bureau.

E =

C1.3- Relever les caractéristiques de la lampe.

Désignation	
Puissance	
IRC	
Flux lumineux	F _L =
Culot	

C1.4- Relever les caractéristiques du luminaire.

Désignation	
Classe photométrique + rendement	
Distance inter-luminaire	m =

C2.1- Déterminer le facteur compensateur de dépréciation.

Formule :	Calcul :
d =	

C2.2- Calculer l'indice du local.

Formule :	Calcul :
K =	

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants			
		Durée : 5 heures	
Epreuve : E2	SUJET	Coefficient : 5	Page : 9 / 27

C2.3- Calculer le rapport de suspension.	
Formule :	Calcul :
J =	
2.4- Relever l'utilance (valeur du tableau à diviser par 100).	
U =	
2.5- Calculer le facteur d'utilisation.	
Formule :	Calcul :
u = U x hs (hs : rendement du luminaire)	
3.1- Calculer le flux lumineux total nécessaire à installer.	-
Formule :	Calcul :
F =	
3.2- Calculer le nombre de luminaire à installer.	
Formule :	Calcul :
N =	
3.3- Calculer l'espacement maximum.	
Nombre de luminaires mini sur la longueur	Nombre de luminaires mini sur la largeur
3.4- Calculer la puissance installée.	

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants			
		Durée : 5 heures	
Epreuve : E2	SUJET	Coefficient : 5	Page : 10 / 27

C4.1- Calculer l'espacement entre les luminaires.

Nombre de luminaires mini sur la longueur	Nombre de luminaires mini sur la largeur

C4.2- Proposer un schéma d'implantation des luminaires.

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants			
		Durée : 5 heures	
Epreuve : E2	SUJET	Coefficient : 5	Page : 11 / 27

C5- Commande de l'éclairage de la	salle de réunion.
-----------------------------------	-------------------

C5.1- Donner la référence du micro-contrôleur. Justifier votre réponse.

Туре	Référence	Justification

C5.2- Chaque zone étant composée de 5 luminaires, calculer la puissance et l'intensité consommée par les luminaires d'une zone. $(\cos \varphi = 0.85)$

	Formule :	Calcul :
P		
I		

C5.3- Peut-on directement alimenter une zone par une sortie d'automate ? Justifier la réponse.

Oui	Justification	
Non		

C5.4- Proposer le schéma de câblage de cette installation page suivante

Représenter un seul bouton poussoir pour chaque zone :

- S1 : ON - S2 : OFF

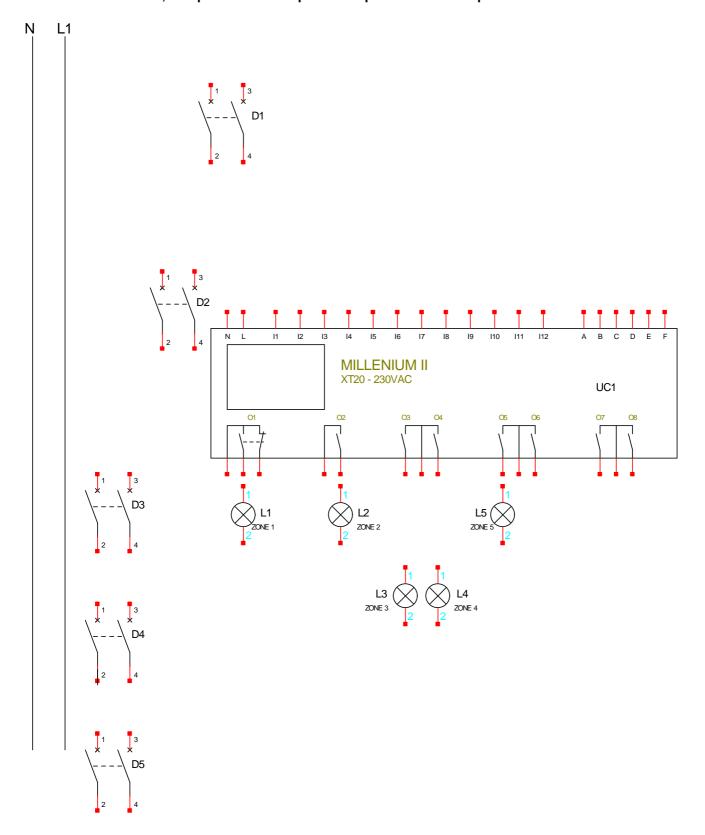
- S3 : Visionnage de film

- S4 : Conférence

- S5 : Projection de documents

- S6 : A programmer.

Les entrées automates fonctionnent 230 V.


Tableau d'affectations entrés/sorties du contrôleur

Entrées		Sorties	
BP S1	I 1	Zone 1	Q1
BP S2	I 2	Zone 2	Q2
BP S3	Ι3	Zone 3	Q3
BP S4	I 4	Zone 4	Q4
BP S5	15	Zone 5	Q5
BP S6	I 6		

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants			
		Durée : 5 heures	
Epreuve : E2	SUJET	Coefficient : 5	Page : 12 / 27

- Protection par D1 (disjoncteur 2 A) pour alimentation automate et entrées
- Protection zone 1 par D2 (disjoncteur 10 A)
- Protection zone 2 par D3 (disjoncteur 10 A)
 Protection zones 3 et 4 par D4 (disjoncteur 10 A)
- Protection zone 5 par D5 (disjoncteur 10 A)

Par souci de clarté, chaque zone sera représentée par une seule lampe.

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants			
		Durée : 5 heures	
Epreuve : E2	SUJET	Coefficient : 5	Page : 13 / 27

(Dossier technique p. 8/31, 20/31 à 21/31)

Dans le cadre de l'agrandissement des locaux, on vous demande de réaliser l'étude d'une installation V.D.I.

D1- Etablir le devis d'un coffret V.D.I.

D1.1- Déterminer le nombre de prises terminales (prévoir 40 % de réserve).

	A installer	Réserve	Total
Nombre de terminaux informatiques			
Nombre de terminaux téléphoniques			

D1.2- Déterminer la capacité du coffret V.D.I.

Désignation			Nombre de U
Panneau de brassage 24 RJ 45 cat 6e pour les ressources téléphoniques			
Panneau de brassage 24 RJ 45 cat 6e po	our les ressources informatiques		
Panneaux passe-fils à placer entre chaque panneau de brassage			
Switch (8 voies)			
Tablettes support produit actif pour switch			
Bloc alimentation 9 prises 2 P + T			
TOTAL			
Coffret : Référence :	Nombre de U :		

D1.3- Etablir le devis.

Désignation	Référence	Quantité	Prix unitaire HT	Prix total HT
Coffret				
Panneau de brassage 24 RJ 45 cat 6e				
Panneaux passe-fils		2		
Tablettes fixes support produit actif (prof. 300 mm)		3		
Bloc alimentation 9 prises 2 P + T		1		
Plaque obturatrice		1		
Switch		3		
Cordons de brassage		33		
			Total HT en €	
		T.V.A. 19,6 %		
		Total TTC en €		

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants					
		Durée : 5 heures			
Epreuve : E2	SUJET	Coefficient : 5	Page : 14 / 27		

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants

EPREUVE E2: Etude d'un ouvrage

SESSION 2009

Sujet : Approfondissement du champ d'application habitat-tertiaire

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants					
_		Durée : 5 heures			
Epreuve : E2	E2 SUJET	Coefficient : 5	Page : 15 / 27		

PARTIE E : ETUDE DE L'ECLAIRAGE DE SECURITE ET DE LA SECURITE INCENDIE

/ 60

Eclairage de sécurité (Dossier technique p. 6/31, 22/31 à 23/31)

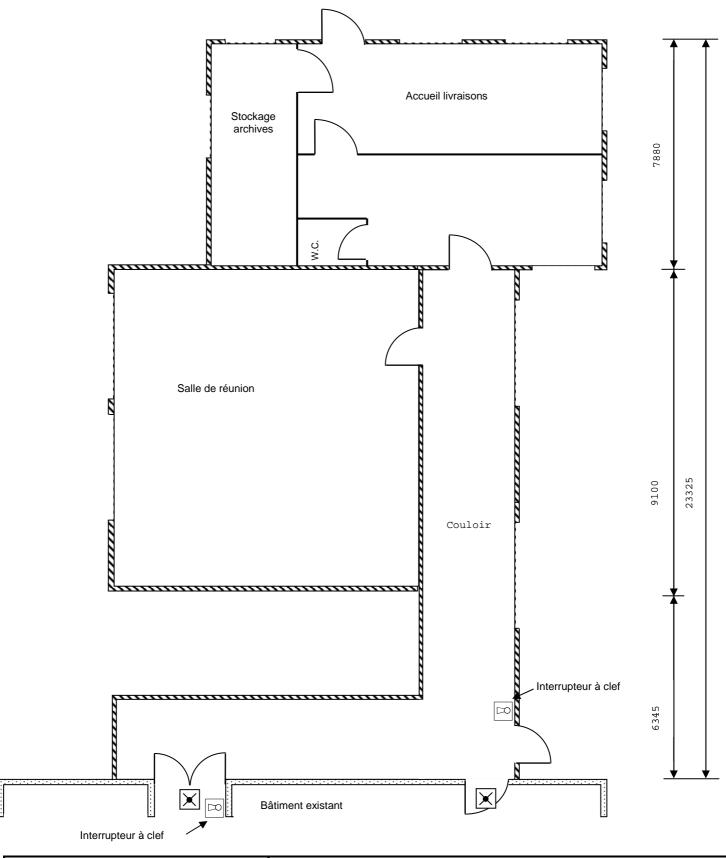
E1- Etude de la normalisation.

Les locaux administratifs existant de l'usine sont munis de système d'éclairage de sécurité. Ce dispositif d'éclairage indépendant permet l'évacuation sûre et rapide en cas de disparition de l'éclairage normal.

L'extension du bâtiment administratif doit répondre aux mêmes contraintes en terme d'évacuation. On vous demande d'établir le positionnement de l'éclairage de sécurité et la modification du schéma de raccordement.

E1.1- Compléter le tableau ci-dessous afin de déterminer les appellations.

APPELLATIONS	DEFINITIONS
B.A.E.S	
L.S.C	
E.R.P	
S.A.T.I	
E.R.T	
Éclairage d'évacuation	

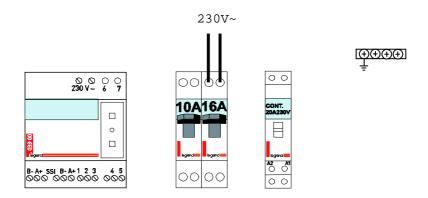

E1.2- Répertorier les différents lieux d'installation de l'éclairage d'évacuation et relever leurs nombres sur le bâtiment existant.

IMPLANTATION DES B.A.E.S	NOMBRE SUR LE PLAN
Au dessus de chaque porte sortie ou de secours	
Au dessus de chaque obstacle	
Pour chaque changement de direction du chemin d'évacuation	

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants					
Épreuve : E2 SUJET		Durée : 5 heures			
	Coefficient : 5	Page : 16 / 27			

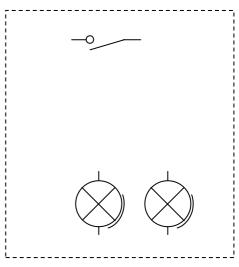
E2 - Implantation du matériel d'éclairage de sécurité.

Implanter conformément aux exigences réglementaires les blocs autonomes d'éclairage de sécurité sur l'extension du bâtiment administratif pour une évacuation vers l'extérieur la plus simple et rapide.

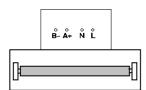


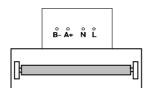
Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants					
		Durée : 5 heures			
Epreuve : E2	SUJET	Coefficient : 5	Page : 17 / 27		

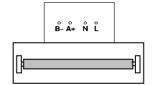
E3 - Raccordement de l'éclairage de sécurité.


Pour des raisons de sécurité et d'économie d'énergie l'entreprise veut installer une mise à l'état repos de l'éclairage de sécurité sur l'extension du bâtiment administratif le soir et ainsi couper l'éclairage normal du couloir et des bureaux de ce même bâtiment.

Compléter le schéma de raccordement dans les règles de l'art.







Représentation partielle de l'éclairage normal de l'extension.

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants					
Épreuve : E2 SUJET		Durée : 5 heures			
	Coefficient : 5	Page : 18 / 27			

Sécurité incendie (Dossier technique pages 7/31, 24/31 à 27/31)

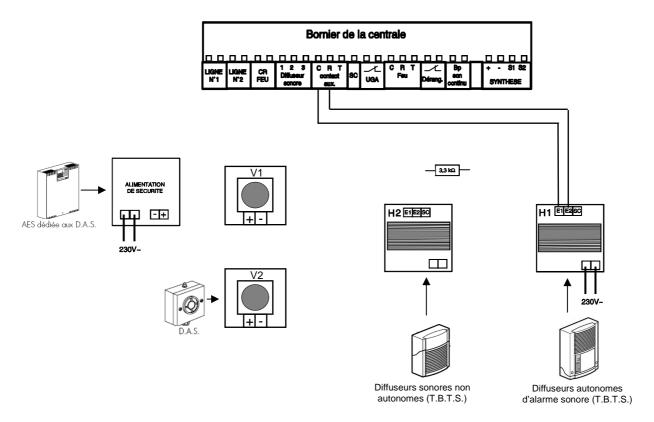
E 4- Mise en œuvre de la sécurité incendie.

E4.1- Choisir les différents types de détecteurs automatiques en fonction des locaux.

Local	Type de détecteur
Stockage archives	
Accueil livraison et Administration	
Laboratoire	
Réserve	Détecteur optique de flamme

E4.2- Déterminer le nombre de détecteur automatique à installer dans les locaux suivants.

Local	Type de détecteur	Surface du local	Hauteur du plafond	S	d	K	An	Nombre de détecteurs
Laboratoire								
Stockage archives								

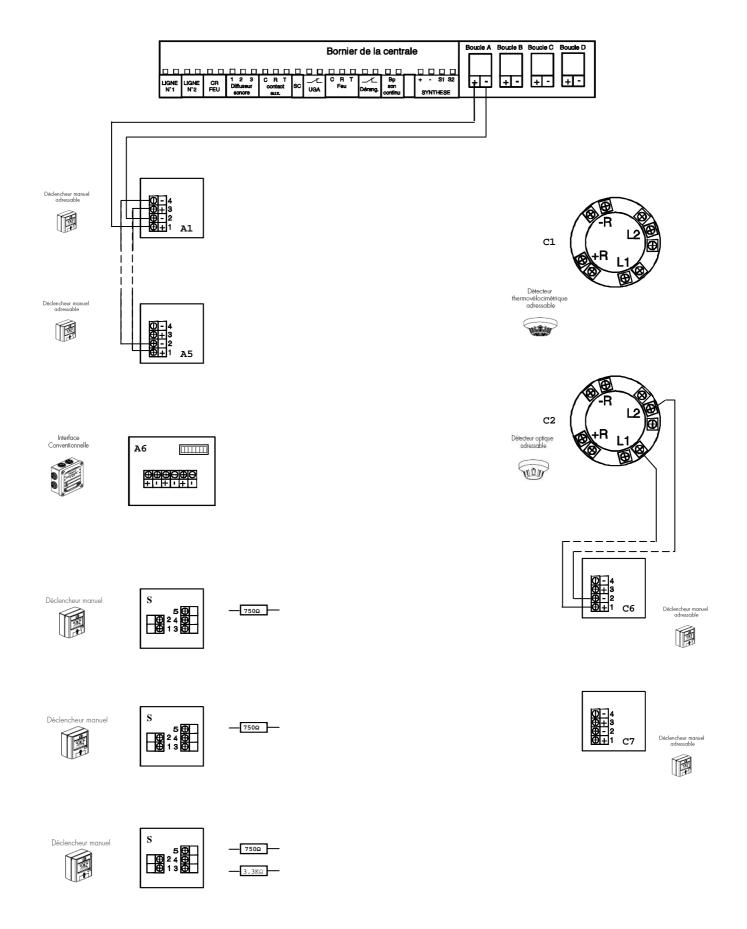

E4.3- Rechercher les références du matériel et le type de câble associé.

Matériel	Référence	Type de câble	Section
Déclencheur Manuel adressable			
Déclencheur à réarmement en face avant			
Déclencheur Automatique adressable	406 73	C2 - 1 paire	8 / 10 ème
Diffuseur sonore non autonome			
Dispositif porte coupe feu			
Interface conventionnelle adressable			

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants			
		Durée : 5 heures	
Epreuve : E2	SUJET	Coefficient : 5	Page : 19 / 27

Une porte coupe feu entre les deux bâtiments et un nouveau diffuseur sonore non autonome sont installés. Des déclencheurs manuels, automatiques et indicateurs d'action compléteront le dispositif d'alarme incendie. A partir de l'installation existante, compléter le raccordement des différents constituants.

E4.4- Raccorder le diffuseur sonore et le dispositif électromagnétique pour porte coupe feu (ligne 1).



E4.5- Paramétrer le matériel installé.

N°de boucle	Adresse	Type de détection	Adressage
С	C 03	Automatique	
С	C 07	Manuel	ON 1 2 4 8 16 32 64
В	B 04	Automatique	
А	A 06	Interface conventionnelle	ON 1 2 4 8 16 32 64

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants			
		Durée : 5 heures	
Epreuve : E2	SUJET	Coefficient : 5	Page : 20 / 27

E4.6- Raccorder les différents matériels constituant les boucles de détections A et C.

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants			
		Durée : 5 heures	
Épreuve : E2	SUJET	Coefficient : 5	Page : 21 / 27

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants

EPREUVE E2: Etude d'un ouvrage

SESSION 2009

Sujet : Approfondissement du champ d'application industriel

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants			
		Durée : 5 heures	
Epreuve : E2	SUJET	Coefficient : 5	Page : 22 / 27

PARTIE F: AUGMENTATION DE LA CAPACITE DE LEVAGE DE 2 TONNES A 3,2 TONNES

(Dossier technique p. 9/31, 28/31 à 31/31)

/ 60

Suite à un problème de sous dimensionnement, on vous demande de choisir le moteur de levage commandant le pont 2, ainsi que son variateur.

F1- Choix du moteur de levage.

F1.1- Compléter le tableau ci-dessous afin de déterminer les différentes vitesses.

	Formule	Application numérique	Résultat
Vitesse N _{r1} (min ⁻¹) en sortie du réducteur pour une charge ≤ 3,2 tonnes			
Vitesse N _{r2} (min ⁻¹) en sortie du réducteur pour une charge > 3,2 tonnes			
Vitesse N _{m1} (min ⁻¹) du moteur pour une charge ≤ 3,2 tonnes			
Vitesse N _{m2} (min ⁻¹) du moteur pour une charge > 3,2 tonnes.			

F1.2- Calculer la puissance en sortie du réducteur. (Prendre la vitesse v₁)

Formule	Application numérique	Résultat

F1.3- Calculer la puissance utile du moteur.

Formule	Application numérique	Résultat

F1.4- Donner la référence du moteur à installer.

Référence	
-----------	--

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants			
		Durée : 5 heures	
Epreuve : E2	SUJET	Coefficient : 5	Page : 23 / 27

F1.5-	Chercher le	s caractéristiques	du moteur et	compléter le	tableau suivant.
1 1.5		3 caracteristiques	au illotoul ot	CONTIDICTOR IC	tabicau suivaiit.

Tension	
Puissance nominale	
Vitesse nominale	
Rendement	
Facteur de puissance	
Couple nominal	
I_d / I_n	
C_d / C_n	2,6

F1.6- Calculer le courant nominal du moteur. (Donner le résultat avec 3 chiffres après la virgule)

Formule	Application numérique	Résultat

F1.7- Calculer le courant de démarrage du moteur.

Formule	Application numérique	Résultat

F1.8- Calculer le couple de démarrage du moteur.

Formule	Application numérique	Résultat

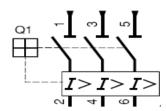
Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants				
		Durée : 5 heures		
Epreuve : E2	SUJET	Coefficient : 5	Page : 24 / 27	

F2.1-	Donner la référence du var (La puissance du moteur es		oteur. e synchronisme est 1500 min	1)
		Référence		
	Donner le type de consign nande.	e analogique permetta	nt d'éviter la chute de tensi	on dans la ligne de
F2.3-	- Préciser lors d'une comm	ande 0 – 10 V, l'inconv	énient possible de la valeur	· 0 V.
F2.4-	La commande du variateu vitesse à donner au variat		igne analogique 0 – 10 V. Pı	rérégler les consignes de
		Vitesse à obtenir	Consigne tension	Consigne fréquence
	Pour une charge ≤ 3,2 tonnes			50 Hz
	Pour une charge > 3,2 tonnes			
	L'approche des butées vitesse réduite	95,54 min ⁻¹		
F2.5-	Donner la fonction de la ré	esistance de freinage.		
F2.6-	Donner la particularité de l	'altivar71 lorsqu'il est	raccordé sur ce type de sch	néma de liaison à la terre.
	Baccalauréat Profess	sionnel Électrotech	nique, énergie, équipe	ments communicants

SUJET

Durée : 5 heures

Coefficient: 5

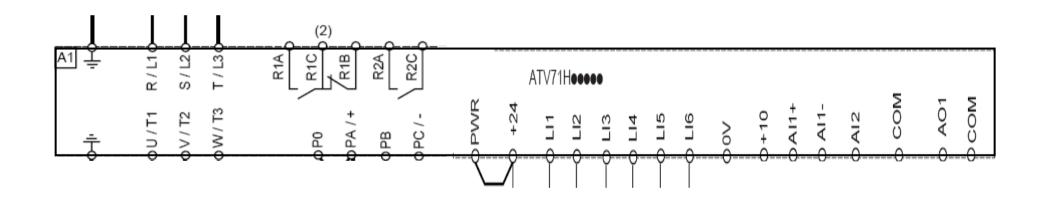

Page: 25 / 27

F2- Choix du variateur de vitesse à associer au moteur.

Épreuve : E2

F2.7 Réaliser le schéma de puissance et de commande de la carte de contrôle du variateur

(Respecter les symboles et repères normalisés).



La commande du contacteur de ligne n'est pas à représenter.

Faire apparaître la résistance de freinage.

Le fonctionnement du grappin est le suivant :

	Sorties API	Relais associé	LI1	LI2	LI3	LI4	LI5	LI6
Marche avant	Q01	KA1	1	0				
Marche arrière	Q02	KA2	0	1				
Vitesse 1 (charge < à 3,2 t)	Q03	KA3			1	0	0	0
Vitesse 2 (charge >à 3,2 t)	Q04	KA4			0	1	0	0
Vitesse 3 (approche)	Q05	KA5			0	0	1	0

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants				
,		Durée : 5 heures		
Epreuve : E2	SUJET	Coefficient : 5	Page : 26 / 27	

RECAPITULATIF DU TOTAL DES POINTS

Barème de notation		
TRONC COMMUN		
PARTIE A : TRANSFORMATEUR PRINCIPAL		30
A1 : Bilan de puissance	6	
A2 : Choix du transformateur	8	
A3 : Batterie de condensateurs	10	
A4 : Planning de remplacement	6	
PARTIE B : DISTRIBUTION		40
B1 : Poste HT	3	
B2 : SLT	6	
B3 : Courants	5	
B4 : Câble C1	20	
B5 : Disjoncteur Q1	6	_
PARTIE C : ECLAIRAGISME		40
C1 : Caractéristiques	6,5	
C2 : Facteurs divers	7	
C3 : Puissance installée	6,5	
C4 : Implantation	7	
C5 : Commande	13	_
PARTIE D : V.D.I.		30
D1 : Devis	30	
	SOUS TOTAL	
Approfondissement du champ habitat tertiaire		
PARTIE E : ECLAIRAGE DE SECURITE & ALARME INCENDIE		
E1 : Normalisation	10	
E2 : Implantation	4	
E3 : Raccordement	10	
E4 : Sécurité incendie	36	
	SOUS TOTAL	/60
Approfondissement du champ industriel		
PARTIE F : SYSTEME DE LEVAGE		
F1 : Moteur	32	
F2 : Variateur	28	_
	SOUS TOTAL	/60
Note obtenue		1200
Note finale sur 20 en points entiers		

Baccalauréat Professionnel Électrotechnique, énergie, équipements communicants				
		Durée : 5 heures		
Épreuve : E2	SUJET	Coefficient : 5	Page : 27 / 27	