Baccalauréat Professionnel Métiers des Transitions Numérique et Energétique

Fiche de travaux liés à des activités : de préparation et de réalisation

Titre: Essai Va et Vient, double allumage et prises de courant

Lieu d'activité: Atelier 2nd

Niveau: 2nde

Repère: TPH2-4

Version 12/10/2021

Support de l'activité : Box en panneau de bois

L'objectif de ce TP est de vous faire vérifier votre montage hors tension puis le mettre sous tension.

Définition des activités confiées à l'élève

1-Pré requis :

La mise en place des conduits et des boitiers dans les cloisons sèches en bois à été réalisée.

2-En ayant à votre disposition :

Votre montage raccordé et deux ampoules. Un multimètre que l'on déplacera

Liaison au référentiel

Liste des tâches métier :

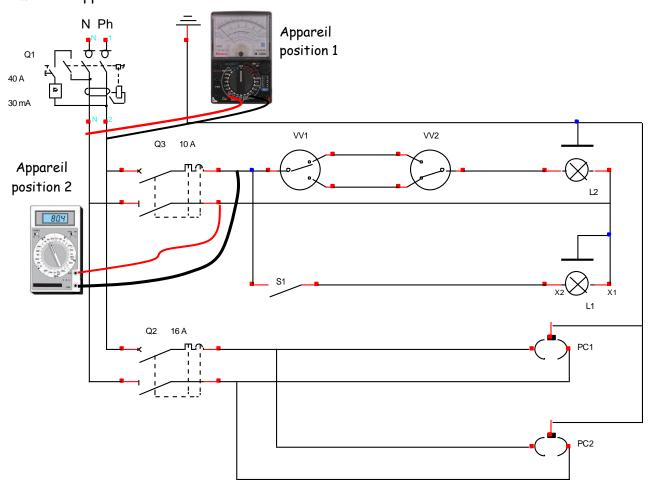
T 1-2: rechercher et expliquer les informations relatives aux opérations et aux conditions d'exécution

T 3-1/TA 3-1 : réaliser les vérifications, les réglages, les paramétrages, les essais nécessaires à la mise en service de l'installation

Liste des compétences :

C1-CC1 Analyser les conditions de l'opération et son contexte Les contraintes techniques et d'exécution sont repérées

C5-CC5 Contrôler les grandeurs caractéristiques de l'installation Les mesures (électriques, dimensionnelles, ...) sont réalisées Les grandeurs contrôlées sont correctement interprétées au regard des prescriptions


Observations pro	oosée par	le professeur	:	Cerise

Cerise	Temps prévu : 4 heures
Oui	Date :
Non	

Nom de l'élève :

A-Préparation

Le schéma développé de votre installation est le suivant :

Q1 étant ouvert

Q3 est OUVERT

Que va indiquer l'appareil position 2 si :

Position VV1	Position VV2	0	infini	Une valeur
En haut	En haut			
En haut	En bas			
En bas	En bas			
En bas	En haut			

Si Q3 est ouvert, que va indiquer l'appareil position 1 si

Position VV1	Position VV2	0	infini	Une valeur
En haut	En haut			
En haut	En bas			
En bas	En bas			
En bas	En haut			

Si Q3 est fermé,

Schneider

D'elle

que va indiquer l'appareil position 1 si

Position VV1	Position VV2	0	infini	Une valeur
En haut	En haut			
En haut	En bas			
En bas	En bas			
En bas	En haut			

Mettre votre appareil de mesure en position 2 (sous Q3), Actionner 51 et un va et vient jusqu'à obtenir une résistance infinie (OL)
Actionner S1, la valeur que vous mesurez est la résistance de L1, noter sa valeur R_1 = Ω . Remettre S1 à sa place, vous obtenez à nouveau infinie.
Actionner VV1 (ou VV2), la valeur que vous mesurez est la résistance de L2, noter sa valeur : R_2 = Ω .
Sans toucher au Va et Vient, remettre S1 en fonctionnement, la valeur que vous lisez est celle de L1 en parallèle (ou dérivation) sur L2. Noter sa valeur R équivalent R_{eq} : R_{eq} = Ω .
Que remarquez-vous ?
Req est : □ plus petite que R1 et R2 □ plus grande que R1 □ plus grande que R2
\Box Req = R1+R2
Particularité du circuit parallèle (ou dérivation) : L1 (de résistance R1) et L2 (de résistance R2) sont en parallèles (elles s'allument en même temps), la
résistance équivalente à deux résistances en parallèle est donnée par $R_{eq} = rac{R1*R2}{R1+R2}$
Vérifier cette formule avec vos valeurs :
R1 = Ω et R2 = Ω , calculer Req =
Dans ce type de montage, les intensités des récepteurs s'ajoutent, d'après vous, quand il n'y a qu'une lampe branchée, l'intensité est « supérieure » ou « inférieure » au montage avec les deux lampes ?
Montrer à l'enseignant vos réponses.

B - Vérifications :

VOTRE MONTAGE EST HORS TENSION, C'EST-A-DIRE QUE LA FICHE D'ALIMENTATION N'EST PAS RACCORDEE A UNE PRISE.

Réaliser les mesures afin de compléter le tableau suivant :

Q1 étant OUVERT :

Q2	Position VV1	Position VV2	Appareil 1	Appareil 2
Ouvert	En haut	En haut		
Ouvert	En haut	En bas		
Ouvert	En bas	En bas		
Ouvert	En bas	En haut		
Fermé	En haut	En haut		
Fermé	En haut	En bas		
Fermé	En bas	En bas		
Fermé	En bas	En haut		

Exploitations des résultats :
En comparant vos résultats avec votre préparation, d'après vous, votre montage fonctionne-t-il
correctement? OUI NON
Si non, trouver la cause et réparer le défaut.
Quand il y a une valeur, quelle est-elle ? Ω
Enlever une des deux ampoules et relever la valeur (ça ne doit pas être infini) qu'indique l'appareil en position 2 si les deux va et vient sont en haut : Ω
Quand il y a les deux ampoules, la résistance est :
\Box plus grande que quand il n'y en n'a qu'une \Box plus petite que quand il n'y en n'a qu'une
Raccorder le câble + fiche mâle à votre montage SANS LE CONNECTER A UNE PRISE et appeler l'enseignant qui mettra sous tension.
SOUS TENSION
Vérifier et mettre les EPI. Q1 étant OUVERT, mesurer la tension qui arrive à l'entrée de Q1 :U =Volt. En vous sachant que la tension doit être de 230 V +/-10 %, conclure sur la qualité de la tension obtenue
□ Tension correcte □ Tension trop basse □ Tension trop haute
Cette tension est-elle compatible avec vos ampoules ? 🗆 Oui 🗆 Non

4/5

Si la valeur obtenue est correcte, fermer Q1 et Q2.

Vérifier le fonctionnement de votre installation.

A l'aide de la pince ampèremétrique positionnée sur le fil bleu que vous avez laissé « plus long », compléter le tableau suivant :

Ampoule connectée	Valeur mesurée (A)
L1 seule	
L2 seule	
L1 et L2	

Conclusion : dans un circuit parallèle,	les Intensités (A) : 🗆 s'ajou	tent \square se sou	istraient
	La résistance équivalente : 🗆	augmente 🗆	diminue

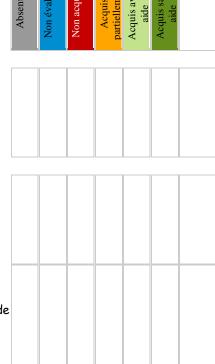
Fiche d'évaluation

Compétence(s) visée(s)

C1-C01 Analyser les conditions de l'opération et son contexte

Les contraintes techniques et d'exécution sont repérées

• S'il y a 2 erreurs dans la partie A : acquis partiellement, si plus de 2 erreurs : Non acquis


C5-CO4 Contrôler les grandeurs caractéristiques de l'installation

Les grandeurs contrôlées sont correctement interprétées au regard des prescriptions

• Si la conclusion des essais sous tension n'est pas logique : Non acquis

Les mesures (électriques, dimensionnelles, ...) sont réalisées

- L'élève ne met pas l'ohmmètre au bon endroit 2 fois : acquis partiellement, si plus de 2 fois : Non acquis
- Si l'appareil n'est pas réglé correctement pour les mesures malgré le rappel de l'enseignant (V puis A) : Non acquis

